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A mechanistic model for borderline solvolyses, which includes a unification of SN1 and SN2 as 

well as El and E2 mechanisms, has been advanced In recent years by Sneen and coworkers.’ The main 

evidence for inltlal support of this model, or theory, came from thelr study of the effects of added 

sodium azlde on the kinetics and products of solvolysis of 2-octyl sulfonate esters In aqueous dio- 

xane solutions. 
2 

Even though this model Introduced a change of views on solvolyses In the dlrection of our own 

“unrf ied mechanlsm,“3 some of its features disagreed wlth those of ours. This made us question- their 

proposed unification of so~voIysls mechanisms and the arguments used to support It. This communica- 

tion deals wlth the question of their interpretatlon of salt effects on the reaction products and 

rate. 

The essence of the experimental support for the proposed theory was provided by the observation 

that the total rate of reactlon, k 
expt I’kNAs 

of 2-octyl mesylate in the presence of sodium azide in 

25 and 30% aqueous dioxane was IntermedIate between zero and first order in azide ions, and that thls - - 

rate fit equation le that described the proposed scheme. 
2 

- However, the above conclusion was arrived 

at by using the molar amount of added sodium azide as a measure of azide Ions; that is, by apparent- 

ly maklng the assumption, although this was not explicitly stated, that the dissociation of this 

“strong” electrolyte Is complete, and that activities are equal or proportional to concentrations. 

Evaluation of this tacit assumption led us to the conclusion that it may be far from justified.4a 

For the purpose of this communication suffice to point out that the concentration range of salt, up 

to 0.311 M, used in thelr studies extends Into the region of significant deviations from the appllca- 

bility of the Debye-HUckeI law. 
5a 

These deviations may be partly described as, or be considered 

equivalent to, Incomplete dissociation. 
5a 

Furthermore, activity coefficients of salts drop sharply 

In that range, even In water; 5b’4a that of azide ion drops to 0.81 at 0.03 M, and to 0.60 at 0.2 M 

aqueous solution. 
5d 

The drop is even greater in aqueous dioxane. 
4a,b 
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We suggest that the use of concentrations of salts Instead of actlvltles Is unjustified. In a 

footnote of a recent publlcatlon on the solvolysis of the a-arylethyl halide system in the presence of 

sod1 urn azl de,6 Sneen commented: ‘I... the Ilnearlty of product plots (W3/ROH vs, sodium azlde concen- 

tration) serves one other important and useful function; It establlshes that, at the concentration le- 

vels of salt employed In these studies (0.113 M), concentrations must be proportlonal to actlvitles.” 

Similar linear plots also appeared In the 1969 publlcatlon under discussion.* Presumab Iy, these I lnear 

plots also provlded the justlflcatlon for the use of concentrations Instead of actlvltles. It Is In- 

structive, however, to conpare the product plots vs, sodlum azlde concentrations with those ~3. the 

corresponding azlde Ion7 actlvltles.4apb (Figs. 1 and 2). Interestingly enough, either type of plot 

for the 30% aqueous dloxane solvolysls can be fitted by a straight Ilne! The data for the 25% aqueous 

dioxane reactlons give less satisfactory straight llne plots.8 Such plots do not provide a sensltlve 

enough test of the question of proportlonalfty’ between concentrations and activities, at least for 

the range and scatter in the reported product data. Nor do they justlfy the use of concentrations 

Instead of act?vitles, especially In the face of evidence against such proportlonallty.4’5 

Figures 1 and 2. Plots of @31,‘/ [R&l]]‘&. [NaN3] (from ref. 21, and us. the corresponding 
azide ion activities, g (4a,b), for the reaction of 2-octyl mesylate with sodium azide and 
water in 25 (Fig. 1) and 30 (Fig. 2) vol % aqueous dioxane. The least square fits (solid 
lines) of the experimental points have slopes and correlation coefficients which are respect- 
ivel . 1: (plot vs. [NaN 1 1 7.72 and 0.989; (plot 2. 2) 12.97 and 0.976. Fig. 2: (plot 

vs. ) 9.35 and 0.991; 7 plot vs. a) 17.23 and 0.983. _- 

Having established this much, we now plot the reported rate data against azide ion activities., as 

an approximation to a more realistic approach to the problem, and compare these plots with those 

against concentrations (Figs. 3 and 4). The plots are quite revealing. The curved plots become 

,7,iO straight lines. This is most significant as it suggests, at least for the data reported,* that 

the rate of destruction of the 

and first order as concluded. 

the proposed scheme (eq. le),* 

starting material, is first order in azide Ion, and not between zero 

Furthermore, these rate data can not fit the rate equation describing 

even with any adjustment of the variable 5 of this equation, other 
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